Clutter-Based Dimension Reordering in Multi-Dimensional Data Visualization
نویسنده
چکیده
Visual clutter denotes a disordered collection of graphical entities in information visualization. It can obscure the structure present in the data. Even in a small dataset, visual clutter makes it hard for the viewer to find patterns, relationships and structure. In this thesis, I study visual clutter with four distinct visualization techniques, and present the concept and framework of Clutter-Based Dimension Reordering (CBDR). Dimension order is an attribute that can significantly affect a visualization’s expressiveness. By varying the dimension order in a display, it is possible to reduce clutter without reducing data content or modifying the data in any way. Clutter reduction is a display-dependent task. In this thesis, I apply the CBDR framework to four different visualization techniques. For each display technique, I determine what constitutes clutter in terms of display properties, then design a metric to measure visual clutter in this display. Finally I search for an order that minimizes the clutter in a display. Different algorithms for the searching process are discussed in this thesis as well. In order to gather users’ responses toward the clutter measures used in the Clutter-Based Dimension Reordering process and validate the usefulness of CBDR, I also conducted an evaluation with two groups of users. The study result proves that users find our approach to be helpful for visually exploring datasets. The users also had many comments and suggestions for the CBDR approach as well as for visual clutter reduction in general. The content and result of the user study are included in this thesis.
منابع مشابه
Visualizing High-Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis
High-dimensional data visualization is receiving increasing interest because of the growing abundance of highdimensional datasets. To understand such datasets, visualization of the structures present in the data, such as clusters, can be an invaluable tool. Structures may be present in the full high-dimensional space, as well as in its subspaces. Two widely used methods to visualize high-dimens...
متن کاملClutter Reduction in Multi-Dimensional Visualization by Using Dimension Reduction
The volume of Big data is increasing in gigabytes day by day which are hard to make sense and difficult to analyze. The challenges of big data are capturing, storing, searching, sharing, analysis and visualization of these datasets. Big data leads to clutter in their visualization. Clutter is a crowded or disordered collection of graphical entities in information visualization. It can blur the ...
متن کاملUsing Penalized Regression with Parallel Coordinates for Visualization of Significance in High Dimensional Data
In recent years, there has been an exponential increase in the amount of data being produced and disseminated by diverse applications, intensifying the need for the development of effective methods for the interactive visual and analytical exploration of large, high-dimensional datasets. In this paper, we describe the development of a novel tool for multivariate data visualization and explorati...
متن کاملStructural Decomposition Trees
Researchers and analysts in modern industrial and academic environments are faced with a daunting amount of multi-dimensional data. While there has been significant development in the areas of data mining and knowledge discovery, there is still the need for improved visualizations and generic solutions. The state-of-the-art in visual analytics and exploratory data visualization is to incorporat...
متن کاملMLMD: Multi-Layered Visualization for Multi-Dimensional Data
Visualization and data mining techniques have for long been laying emphasis on high-dimensional data processing. In this paper, we propose a multi-layered visualization technique in 3D space called MLMD with its corresponding interaction techniques, for visualizing multi-dimensional data. Layers of point based plots are stacked and connected in a virtual visualization cube for comparison betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005